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420. The Rate of Reactions in Xolution. 
By R. STEVENSON BRADLEY. 

SEVERAL attempts have recently been made to explain the rate of reactions in solution 
by a collision mechanism. The explanations generally adopted (Christiansen, 2. physikal. 
Chem., 1924,113,35 ; Jowett, Phil. Mag., 1929, 8, 1059. For a review, with full references, 
see Moelwyn-Hughes, “ Kinetics of Reactions in Solution,” Oxford, 1933) fall into two 
groups : (a) for bimolecular reactions, the collision frequency is taken to be the same as 
in the gaseous phase at  the same concentration, and (b) for collisions between solute and 
solvent, which determine in some cases the rate of unimolecular reactions, the collision 
frequency is given by ,Z, = 3xyo/2m1, where q is the viscosity of the medium, cr the 
diameter and m, the mass of a solute molecule. An alternative formula is given by 
,Z, = 8RT(Ml + M,)/3xDM1M,, where M ,  and M ,  are the molecular weights of solute 
and solvent respectively, and D is the diffusion coefficient of the solute. The two fornuke 
are seen to be roughly equivalent when D is replaced by its value R T / 3 q N a  given by 
Einstein. 

The explanations (a) and (b)  are open to the objection that insufficient attention has 
been paid to the molecular theory of liquids. Explanation (a) is a broad generalisation 
which requires detailed investigation. Even if it gives a numerical result which is approxi- 
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mately correct, the formula probably does not represent the true behaviour of collisions 
in solution where the mean free path is less than the diameter (see, e.g., Harper, ROC. Camb. 
Phil. SOC., 1932, 28, 223). Moreover, explanations (a) and (b )  seem dissociated from one 
another. I t  is difficult also to believe that the viscosity enters explicitly into the theory, 
since the viscosity of a liquid is a measure of the resistance offered to changing the chaotic 
motion of the molecules into an ordered one (Scatchard, J .  Amer. Chem. SOC., 1923, 45J 
1580) and it is doubtful whether such a conception can be applied to the chaotic motion 
itself. In other words, it would seem incorrect to apply the diffusion theory of colloidal 
particles, in so far as it embodies Stokes's law, to molecular diffusion ; the modifications of 
the law proposed by Cunningham, Lenard, Millikan, and Epstein (Epstein, Physical Rev., 
1924, 23, 710) suffer from the same objection. 

An exact formulation of the dynamical theory of the liquid state is so difficult that some 
degree of approximation is necessary. It is possible, however, as an alternative, to avoid 
the introduction of viscosity by the following approximate argument, which, in effect, 
considers a liquid to possess a quasi-solid structure; Bernal and Fowler's work on the 
structure of water (J .  Chem. Physics, 1933, 1, 515) shows that this view can give good 
results. In this paper, because of special complications, ionic reactions will not be 
considered in detail. 

Free Space, Oscillation Frequency , and Collision Frequency in Liquids.-As a rough 
model of the liquid it may be assumed that the molecules are spherical and close-packed. 
Each molecule, for the closest packing, is surrounded by twelve others, and the motion 
of the molecule within this enclosure resembles a vibration of high frequency and continu- 
ally changing axis; hence, around each molecule may be drawn a sphere representing the 
confines of this oscillatory motion. The effect of temperature will be to increase the 
amplitude, and conversely the latter may be inferred by extrapolating the virtual radius 
of the molecule, calculated from the density, to the absolute zero. Fortunately, the virtual 
radius usually varies linearly with the temperature, and a wide extrapolation is possible. 
The results obtained by this method will probably be of the right order. 

In addition to this oscillatory motion, a small fraction of the molecules will be under- 
going self-diffusion. As will be seen later, the energy required for a molecule to break 
through the surrounding envelope is such that less than 1 yo of the molecules will be under- 
going a net displacement relative to the molecules immediately surrounding them, and for 
the calculation of the collision frequency in a pure liquid this fraction may be neglected. 

Let a be the mean double amplitude of the oscillation of a molecule, v2 the mean square 
velocity, and T the mean half-period of the oscillation. Then 

For hexagonal close-packing, r,  the virtual radius of a molecule, is equal to (p x 0*74M/Ni~p)* ,  
where N is the Avogadro number, and M and p are the molecular weight and density of the 
liquid. If Y varies with temperature according to r = ro{l $- bT), then aT = 2(r - yo) .  
This makes a proportional to the temperature, and therefore to the kinetic energy, giving 
ac = $mv2, where c is a constant. This may be used as a basis for a more refined calcul- 
ation, in which the last relation is applied to individual molecules. The number of molecules 
per C.C. with kinetic energy between E and E + dE per g.-mol. is d n  = nE-Be-E/122' . dE/ 
(rcRT)*, where n is the total number of molecules per C.C. These d n  molecules will have 
periods between 7' and 4 + dT', where T' = a'/v' = +mv'/c = (Em/2N)*/c. Hence T ,  

the true mean half-period, is equal to 

mv2 = 3 R T / N  and T = alv = ~ ( r n N 1 3 R T ) ~  . . . . . ( 1 )  

which will be used instead of the approximate equation r = a/v. 

molecules is therefore (via) (3x/2)*, and 
The number of collisions per second which each molecule makes with the surrounding 

total no. of collisionslc.c./sec. = ( $ z ~ n / a ) ( 3 x / 2 ) ~  . . . . (3) 
(since in summing over one C.C. each molecule is counted twice). 
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The above calculation gives results which are in accordance with our conception of internal 

pressure. The external pressure, p ,  of a liquid may be written i n  the form p = kinetic pressure + cohesive pressure [e.g., in Beattie and Bridgman's equation ( J .  Amer. Chem. SOL, 1927,49,1665) 
the last term is Al/TrZ]. Since the vapour pressure of a liquid is usually small at room temper- 
ature, the two terms will be almost equal, The kinetic pressure must therefore, like the cohesive 
pressure, be large (of the order of 1000 atmospheres) (Hildebrand, " Solubility," Chap. ix, 
Chemical Catalog Co,, 1924). 

Imagine a molecule 
enclosed in a cubical box of edge about 5 A.U. This will simulate the conditions in a liquid. 
At  each impact with the wall of the box the change of momentum is 2mv, and the change per 
second is 5nzv(v/2a). With a = 0.5 A.U., this gives a pressure of about 2000 atm., which is of 
the correct order. 

The internal kinetic pressure may be calculated roughly as follows. 

The Rate of Reactions in the Liquid Phase and the Rate of Unnimolecular Reactions in 
Solution.-Formula (3) may be applied at once to the case of reaction in the liquid phase. 
Each molecule will contribute two squared terms to the collision energy available for 
activation, kinetic and oscillation potential energy, if as a first approximation it is assumed 
that the potential energy is a quadratic in the displacement co-ordinates. This introduc- 
tion of squared terms differs essentially from Moelwyn-Hughes's treatment, in that it is the 
same for all reactions and does not include internal degrees of freedom. The latter may be 
operative in some cases, but their allocation is so uncertain that it is thought better to 
consider only the simple case of collision between oscillators. 

On the assumption that all collisions in which the energy exceeds the critical increment 
E are effective for reaction, the velocity constant is given by 

Since d l og , k /d ( l /T )  = - E / R  + 3T/2 (a is proportional to T ,  and ZI to Ti) the true value 
of E is obtained by adding #RT to the value derived from the slope of the approximate 
straight line given by plotting log, k against 1/T; this is denoted by El.  

An example is provided by the conversion of d-pinene into dipentene. The following 
table shows good agreement between Y, obs., the virtual radius, calculated from the density 
and Y ,  calc., derived from the linear relation Y = 3.239 + 1.18 x 10-3T : 

T ,  absolute .............................. 273" 290.9" 332.4" 362%" 
'Y, obs., A.U. ........................... 3-561 3.583 3.632 3.657 
Y,  calc., k.U. ........................... 3-561 3.582 3.631 3.655 

(Th? data for the density were those given by Beilstein for Z-pinene, since more values were 
available for this than for d-pinene.) 

E ,  for the liquid was not measured, but for the gas 
it was 43,710 and for petroleum solution 41,210 cals./g.-mol. The true value will probably 
not be far from the latter, which gives a collision frequency x * of 1.4 x 1014 per sec. 
(obs. 5-52 x 1014; Smith, J .  Amer. Chem. SOC., 1927, 49, 43; Conant and Carlson, ibid. ,  
1929, 51, 3464). 

In the case of unimolecular reactions the assumption that collisions between solute and 
solvent molecules with energy greater than E are effective for reaction gives a velocity 
constant 

At T = 457.5" K., Y = 3.779 A.U. 

The factor 6 is not included. As an example the reaction CC13*C02H --+ CHC1, + CO, in 
aniline solution will be considered. For trichloroacetic acid, r = 2-755 + 0.9576 X lO-,T, 
and for aniline, Y = 2.790 + 0% x 10-3T (both & O * O O l )  a t  60"; for 25", the values for r 
are respectively 3.040 and 2.988 (density data from Beilstein). If it is assumed that the 
shell of aniline molecules is sufficiently rigid to limit the vibrations of a trichloroacetic acid 
molecule (the two values of r at 25" are very nearly the same, and the change in a for the 

* That is, 2 in the equation k = t e - W R T .  
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acid from the value in the pure liquid is very small) a for the acid may be calculated to  be 
0.466 A.U. The value of E ,  is 28,350 cals./g.-mol. ; hence E at  25" is about 29,230 cals./g.- 
mol., which gives k = 1.5 x lo-' sec.-l (obs., 6.7 x lo-' sec.-l; Goldschmidt and Brauer, 
Bey., 1906, 39, 109). 

The decomposition of diethylmalonic acid in water affords another example : 
CEt,(CO,H), j CHEt,*CO,H + CO, ; I may be calculated from Beilstein's density value 
for the isomeric ethyl malonate-the error in a is probably not serious-giving I = 3.204 + 
1.133 x 103T, i.e., at  60°, Y = 3.581. Since I for water is about half this, it is clear that 
the normal cluster of four water molecules (Bernal and Fowler, Zuc. cit.) cannot accommodate 
an acid molecule inside; hence a will be taken to be the same as for the acid at  the same 
temperature; El is 33,430 cals./g.-mol. This gives k = 0-71 x sec.-l at 60" (obs., 
2.0 x 

For most of the substances data are lacking for the temperature variation of the density. 
The calculation may, however, be reversed, and values of a calculated from the observed 
values of k .  The applicability of the method is demonstrated by the agreement to within 
a factor of 5 of reasonable values of a in many cases (Table I). This method has the 
advantage that the assumed linear variation of a with T enters only by increasing E by 
&RT. Even if a is assumed to be a constant, practically the same agreement of calculated 
values of a with reasonable results is obtained. 

sec.-l; Moelwyn-Hughes, o$. cit., p. 164). 

TABLE I. 
(Cf. Moelwyn-Hughes, o+. cit., p. 164.) 

Decomposing substance. 
Camphorcarboxylic acid .................. 
2 : 4 : 6-Trinitrobenzoic acid ............... 
Triethylsulphonium bromide ............ 
Acetonedicarboxylic acid .................. 
Benzenediazonium chloride ............... 
o-Toluenediazonium chloride ............ 
Mesoxalic acid .............................. 

,, ,, .................. 
I ,  1 ,  ............... 

m- ............ 1 s  , I  

E l  (cals. 
Solvent. per g.-mol.). k (obs.) (sec.-1). n (A.U.). 
PhCOMe 28,960 1.59 x 10-6 2.37 

29,640 3-31 x 10-7 4.14 
29,970 3.33 x 1 0 - 6  0.18 

H2O 

AcOH 31,060 8-51 x 10-7 0.20 
23,320 5.48 x 0.34 
23,360 3.43 x 10-3 5-1 1 

H20 

23,440 8-97 x 10-3 1.73 
H2O 

22,800 8.89 x 10-3 4.58 
H2O 

33,700 1.82 x 10-8 0.24 
H2O 
H2O 

2:0, 34,990 4-07 x 10-9 0.1 1 

In some cases the errors are larger ; e.g., for the decomposition of 2 : 4 : 6-trinitrobenzoic 
acid in toluene, a = 42 k.U.  (contrast Table I). However, for every 1000 cals. error in E,, 
a will be in error by a factor of about 6.5 at  60". The above theory, moreover, is not 
intended to be a comprehensive one, but rather a method of approach to the problem- 
essentially different from that adopted by Moelwyn-Hughes-which may need elaboration 
in special cases; e.g., deactivating collisions with the solvent and the effect of internal 
degrees of freedom have not been considered. In contrast to the method adopted by 
Moelwyn-Hughes, the collision frequency x is independent of the viscosity, and log x varies 
only slightly with the temperature (Moelwyn-Hughes, op. cit., p. 159, gives the formula 
k = and allows for the variation of u) with temperature). On the above 
view (equation 5) the solvent molecules immediately in contact with a solute molecule 
supply the energy required for activation, and diffusion through the solvent need not be 
considered; it will be shown below that only a small fraction of the solute molecules are 
undergoing diffusion. On the other hand, diffusion is the controlling factor in bimolecular 
reactions in solution and will be considered below as a natural extension of the conception of 
vibration frequency and solvent envelope. 

Difusion in Solution.-Whereas the viscous resistance offered to a solute molecule is 
difficult to formulate in terms of viscosity, the diffusion coefficient is a readily intelligible 
concept. On the above theory, diffusion will occur when a solute molecule has sufficient 
energy, E,, to break through the envelope of solvent molecules surrounding it. Thus 
diffusion relative to the surrounding molecules will proceed by a series of jumps, each equal 
to d, from one energy trough to another. Consider a tube one sq. cm. in cross section 
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containing the solution (Fig. 1; not drawn to scale), and suppose that diffusion occurs 
from right to left. Select two planes, 1 and 2, a distance d apart, and let the concentra- 
tions of the solution at  1 and 2 be c1 and c2 respectively. If we divide the solute molecules 
at plane 1 into six groups, three pairs a t  right angles, the number of solute molecules leaving 

plane 1 from right to left in time 7, the oscillation frequency of 
the solute, is Qdcl@alRT, since the number of solute molecules at 
plane 1 may be taken as dc,; the dotted lines, a distance d apart, 
define the limits of the solute molecules relegated to plane 1. The 
allocation of the molecules into six groups is, of course, an 
approximation, which will, however, only slightly affect the order 
of the result. Similarly the number of molecules leaving plane 2 
from left to right in time is &dc2e-E21RT. Diffusion at  right angles 

d--- ---f to the axis of the tube does not influence c.  Diffusion of the 
type considered still continues in the absence of a concentration 

gradient across the tube, but of course there is no net flow. The net flow along the 
tube is therefore d(c ,  - c & - ~ z ‘ ~ ~ / ~ T  per sec. per sq. cm. = D ( c ,  - c,)/d, where D is the 
diffusion coefficient. Hence 

FIG. 1. ‘m 
I ’ 

The factor E,/RT is not introduced as in equation (4) since the calculation considers the 
fraction of solute molecules of sufficient energy to pass through the barrier. A molecule 
cannot be activated by collision with the barrier for the process of diffusion through it, 
for the receipt of energy from the barrier would occasion reflexion, although such energy 
would be available for unimolecular decomposition. In contrast to the deduction of D by 
use of Stokes’s law, formula (6) does not involve the viscosity explicitly. 

Although diffusion in solution is not usually supposed to vary exponentially with 
temperature, since D is usually written 
in the form RT/3qNo,  and the tem- 
perature variation of D / T  is usually 1.3 
attributed to y1 (Williams and Cady, 
Chem. Reviews, 1934, 14, 171), the 1.2 
results support equation (6). A similar 
law is found for such a “physical” 
process as the diffusion of the inert 
gases through solids. On plotting 
log D against 1/T, a straight line is 1.0 
obtained in many cases (Fig. 2). The 6 
data are taken from the Interna- 40 .9  
tional Critical Tables except those for 
phenol in methyl alcohol (Thovert, 3 
Ann. Physique, 1914, 2, 369). The 
true value of E, is E, + iRT, where 
E, is taken from the slope of the graph. 
Strictly, log D - log T should be 
plotted against 1/T; however, this 
scarcely affects the final result. The 
variation of d with temperature is 
negligible. Results are summarised in 
Table I1 ; D is given by D = Doe-E2’RT/ 
TH, and L is the latent heat per g.-mol. of the solvent. L is seen to be roughly twice E,; 
Do (obs.) in Table I1 refers to values of Do calculated from this formula, by using the 
values of E,  determined from Fig. 2. Values of Do may be calculated as before from 
the values of a as determined from the temperature dependence of the density (Beilstein), 
and are given under Do, calc., in Table 11. This gives the following values of r : 

FIG. 2. 

$ 

0.7 

30 31 32 33 35 36 37 
m4/? 
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PhOH, Y = 2.674 + 0.9 x 104T ; C6H6, Y = 2.640 $- 1.1 x 1O3T; 
MeOH, Y = 2-173 + 0.97 x 10-3T; C2H,Cl4, T = 2.907 + 0.65 x 10sT; 

d has been taken to be equal to the sum of the virtual radii of solute and solvent. 

TABLE I1 
E3 (cals. 

Solute. Solvent. per g.-mol.). lOOO,, obs. lOOO,, calc. L, cals. 
PhOH MeOH 3,151 6.44 9.5 8,410 

3,078 9.44 10-4 7,360 
5-16 10.6 7,350 s.-C,H,Br, s.-C,H,Cl, 3,365 

4,410 62-8 - 9,710 
3,960 2-51 - 9,710 

PhOH C*H, 

CaCl, HZO 
KC1 HZO 

Values of Do for the ionised molecules have not been calculated owing to complications 
(see below). In  view of the nature of the assumptions, the agreement in the other cases is 
good. The selection of a in the case of solutions is somewhat arbitrary : when the solute 
and solvent have nearly the same virtual radius, it is assumed that the envelope of solvent 
molecules determines the amplitude of vibration of the solute molecules. When Y for the 
solute is much greater than for the solvent, a is taken to be the same for the solute at the 
same temperature, i.e., the solute molecule accommodates solvent molecules around it. 
In  any case, the order of the result will not be affected, and the above calculation for D may 
be applied with confidence to the calculation of the rate of bimolecular reactions in solution. 
It is noteworthy that, owing to the exponential term, only a small fraction of the solute 
molecules are undergoing diffusion (about 0.5%). 

The Rate of Bimolecular Reactions in Solution.-In fairly dilute solution any molecule 
of solute will be surrounded by solvent molecules almost entirely, and solute will diffuse 
up to this envelope. 

Let nl and n2 be the number of reactants per c.c., and D, and D, their diffusion coeffi- 
cients. Smoluchowski (2. physikal. Chem., 1918, 92, 129) showed that the number of 
molecules of species 2, diffusing in time At up to a distance d of a molecule of class 1 (d is 
measured from centre to centre) is 

4xd(D1 + D2)n,At + 8r*D*d2n,(At)) , . . . . . (7) 
(but Harper, Trans. Faraday SOC., 1934,30,636, considers this is erroneous by a factor of 4). 
If At > d2/D, the last term is negligible. The chance that any particular molecule of 
species 2 will collide with the molecule 1 after diffusing up to the distance d from it is 1/12 
on the basis of hexagonal close-packing and equal radii for all species of molecule. It is 
assumed that a t  the position of instantaneous rest of each vibration molecule 1 makes a 
collision. Hence the number of collisions of molecules of species 2 with 1 in time At is 

4 x 4xd(D1 + D,)nln2/12 . . . . . . 
where the factor 4 allows for counting each molecule twice. 

If the rate is expressed in the form dnldt = knln,  lOOO/N, then 

where E and E,  are the activation'energies for reaction and diffusion; E,  is actually the 
sum of the diffusion activation energies of the two solutes. As before, E3, calculated from 
the slope of log k plotted against 1/T, is equal to E + E,  - +RT, so if the velocity constant 
is expressed in the form k = xe-Ea'RT, where x is taken to be independent of T, 

and T may be taken as 298. Also E may be taken as about 3000 cals., for a variation in 
lo00 cals. affects x only to the extent of about 5%. Further, d, = y1 + Y,, d,  = r, + Y,, 

and d = rl + Y,, where Y,, Y,, and yS are the virtual radii of solutes 1 and 2 and of the solvent. 
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A result similar to equation (8) was obtained by Olander (Z .  physikal. Chem., 
1929, A ,  144, 118), who gave for the collision frequency per sec. per C.C. the formula 

k’T (’l + r2)2,  where k’ is the gas constant. On eliminating 7 by means of the 

equations D, = k ’ T / 6 q ~ 1 ,  D, = k’T/6qr2 (which is the basis on which Olander’s result 
was obtained), we find x = r2(0, + D2)(r1 + r2),  which differs from (8) only in a numerical 
fact or. * 

The above calculation will not apply as it stands to small ions such as multivalent 
cations, to which a sphere of polar solvent molecules, e.g., water, will be attached with a 
much firmer binding than that already considered. This envelope of solvent molecules 
directly in contact with the ion may accompany it as it diffuses through the solvent, an 
outer and more weakly oriented envelope of solvent molecules being built up and again 
dispersing. The energy required for the ion to break through the inner envelope will be 
greater than for a neutral molecule, and the range of the motion of the ion will be more 
restricted (1 /T greater than for a neutral molecule). For larger ions (anions) solvation need 
not be considered, and the charge will affect only the value of E,. The influence of the 
ionic atmosphere need not be considered, since the displacements of the ion are very small 
and infrequent (in contrast to the conditions obtaining when a potential difference is 
applied), and after each jump from one position of mean equilibrium to another the ion may 
have to wait some time before again escaping from its envelope. Consequently consider- 
ations of relaxation time (Onsager, Trans. Faraday SOC., 1927,23, 341) do not affect the form 
of the diffusion equation. Since density data are lacking for the cases in question, a will 
be calculated from the observed value of x by means of equation (10). For simplicity, it 
will be assumed that d, = d2 = d = 5 if.U., and a1 = a2 = a. Suitable examples of 
bimolecular reactions between un-ionised molecules are rare. The reaction Et,S + EtBr -+ 
Et,SBr has been studied in benzyl alcohol (Moelwyn-Hughes, o+. cit., p. 79) : E, = 24,470 
and x = 0-31 x l o l l ;  this gives a = 12-1 A.U. 

= n l n 2 s  - r )  * 
1112 

TABLE 111. 

Reaction. 
MeONa + 1 : 2 : 4-C,H3(N0,),C1 .................. 
EtONa + ,, .................. 

EtONa + C,H5CH,I .............................. 

I, 

EtONa + Me1 ....................................... 
EtONa + EtI. ......................................... 
PhONa + PrI .......................................... 
PhONa + PrbI ....................................... 
PhONa + ClaH331 .................................... 
C,H,CH,.ONa + BuI .............................. 
C,H,CH,.ONa + iso-BuI ........................... 
C,H,*CH,.ONa + C16H331 ........................ 
o-C,H,Me-ONa + Me1 .............................. 

Solvent. 
MeOH 
EtOH 

I ,  

$ 3  

I, 

* I  

1 ,  

9 ,  

9 ,  

, 
,* 
,, .............................. m- ,. 2 ,  > I  

.............................. P -  
p-C,,H~ONa + EiI ................................. Mt%H 
CH3-[CH,’J3C1 + I’ .................................... COMe, 
C,H,*CO*[CH,],Cl + I’ .............................. 
C3H,Br, + I’ .......................................... M&H 
CH,(OH)CH,Cl + OH’ H2O 
C2H5Br + OH’ ....................................... EtOH 

.............................. 

zx 10-11. 
1-92 
1.80 
2.42 
1-49 
0.15 
3.53 
1.74 
2.78 
2-92 
2-45 
1-26 
1-30 
2.27 
8-49 
0.10 
2.24 

1-07 

4-30 

10.5 

25.5 

E,  (cals. 
per g.-mol.). 

17,450 
16,760 
19,490 
20,650 
19,900 
22,450 
22,100 
22,430 
21,560 
21,350 
21,090 
21,180 
19,490 
20,900 
21,010 
23,500 
22,160 
25,100 
19,870 
21,400 

a (caIc.), 
A.V. 

2.3 
1% 
1.4 
2.5 

22.8 
0.9 
2.4 
1.0 
1.0 
1.1 
1.9 
2.2 
1.1 
0.3 

25.1 
1.5 
0.3 
2-8 
0.2 
1.4 

Most of the other examples appear to be reactions involving the formation of quaternary 
ammonium salts. It is well known that these are “ abnormal,” in the sense that the rates 
cannot be interpreted on a simple kinetic hypothesis, since in the gaseous phase, where the 
collision mechanism is well established, abnormally slow rates are obtained for the form- 
ation of tetraethylammonium iodide (idem, ibid., p. 109). It is necessary, therefore, to turn 
to ionic reactions for examples, and no serious difficulty is introduced if one of the reactants 

* Moelwyn-Hughes (op.  cit., p. 119) states t ha t  Olander’s result is dimensionally incorrect; but 
since n, = L+, n2 = L4, = ML-lt-l, k‘T = ML2t-2, z has the dimensions t-1L-3, i.e., number per C.C. 
per sec., which is correct. 
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is an un-ionised molecule, and the ions considered are not strongly solvated. This is due 
to the fact that no corrections are necessary for an uneven distribution of molecules of 
solute 2 around a molecule of solute 1. The same result follows from Bronsted’s theory, 
according to which the velocity of the reaction A + B --+ C + D via a complex is given by 
2, = k,cAc, .fafB/fc, where the 7 s  are activity coefficients, i.e., v = koc+c&2aZAZBrf ( idem,  
ibid., p. 197), where zq and x i  are the-charges on A and B, p is the ionic strength, and a 
is a constant for the solvent in question. This 
does not mean, of course, that the rate will be the same whether one reactant is ionised or 
not, owing to the influence of E. 

Examples of the reaction between an ion and an un-ionised molecule are given in Table 
111, and values of a are calculated as before. In many cases agreement with a reasonable 
value of a is obtained. The reactions RONa + R’X -+- ROR’ + NaX are probably mainly 
ionic. Acree (Amer. Chem. j., 1912, 48, 352) gives for PhONa + Me1 the value k,,,/ 
Kmolecular = 5-95 at 25”. The values of the degree of ionisation, however, are of doubtful 
significance, for interionic attraction was not allowed for. In general, the agreement with 
a reasonable value of a is of the same order as the agreement of z, as calculated by Moelwyn- 
Hughes, with x observed. Thus the above theory offers an alternative picture for reaction 
mechanism in solution in simple cases. 

On putting 2, = 0, the result follows. 

SUMMARY. 
The rate of reaction in solution is calculated by a method which takes into account the 

The rate of a unimolecular reaction in which activating collisions are supplied by the 

c E I R T ,  where v2 is the mean square velocity of a solute molecule, 

Agreement is found in many 

It is shown that diffusion in solution can be interpreted in a similar way, and agreement 
The latter are given by 

- E p ‘ R T ,  where d is the distance a solute molecule moves from one position of mean 

molecular structure of liquids and avoids the introduction of viscosity. 

solvent is -(-y. 
n the amplitude of vibration, and E the energy of activation. 
cases. 

is found between observed and calculated diffusion coefficients. 
d2v 3x  

equilibrium to another, and E,  is the activation energy for diffusion. 

v 3x  
a 2 RT’ 

s,(‘i>t” 
The rate of a bimolecular reaction is deduced to be 

where d, = y1 + Y,, d, = y 2  + Y,, d = Y ,  + y 2 ,  and Y ~ ,  r2, rs are the virtual radii of the 
reactant and of the solvent molecules, N is Avogadro’s number, E,  the sum of the diffusion 
activation energies of the two solutes, and E the activation energy for reaction. Agreement 
is found for many examples of reactions between a large ion and an un-ionised molecule. 

The general theory of ionic reactions is not considered. 
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